ŹRÓDŁA NILU

Sekrety źródła twego, o Nilu, skrywa Natura,

Nie dozwalając zobaczyć dziecinnych twoich początków.

Lukan

 

Fontenelle w swojej Eulogii Newtona powtarza anegdotę o tym, że nie musiał on właściwie studiować Euklidesa, jeden bowiem rzut oka na jakieś twierdzenie wystarczał mu, aby pojąć jego sens. I dlatego przystąpił natychmiast do zgłębiania dzieł trudniejszych, np. Geometrii Kartezjusza czy Dioptryki Keplera. Można więc do Newtona zastosować słowa Lukana o Nilu, którego źródeł nikt nie zna.

Współczesne badania manuskryptów usunęły przynajmniej część białych plam otaczających owe początki. Lecz choć rękopisy pokazują krok po kroku postępy wiedzy młodego Izaaka Newtona, tajemnica przemiany nikłego strumyka w potężną rzekę pozostaje nieuchwytna. W roku 1665, rok po przeczytaniu Kartezjusza, Newton osiągnął wyniki, które postawiłyby go w czołówce mate­matyków Europy, oczywiście gdyby ktokolwiek wiedział o tych wynikach i istnieniu Izaaka Newtona.

Kilka pierwszych lat studiów było najwyraźniej poszukiwaniem bez ustalonego planu. Newton zajmował się wtedy fonetycznym systemem ortografii angielskiej (eksperymentując nad wymową zgłosek), szyframi oraz uczył się różnych metod stenografii. Przez krótki czas pracował nad ulepszeniem uniwersalnego języka przedstawionego w książce Dalgarno Ars signorum, 1661 (Sztuka znaków). Chodziło o język, w którym pojęcia poklasyfikowane są w gru­py i wszystkie słowa oznaczające pojęcia danej grupy zaczynają się na tę samą literę, druga litera odpowiadałaby z kolei podziałowi wewnątrz grupy itd. Język taki miałby być zrozumiały dla wszy­stkich ludzi jednakowo, bo zbudowany byłby na podstawie filo­zoficznych pojęć i tym samym wolny od historycznych przypadłości języków naturalnych. Język uniwersalny był jednym z marzeń epoki. Różnorodność i niekonsekwencje języków naturalnych obrażały zmysł racjonalnego porządku wielu ówczesnych filozofów.

Nowa filozofia torowała sobie stopniowo drogę nawet na konserwatywnych uniwersytetach. Kartezjusz stawał się autorem modnym wśród niektórych szkolarzy. Samuel Pepys w 1663 r. przepytując swego młodszego brata Johna, bakałarza Christ's College w Cambridge, stwierdził z zadowoleniem, iż brat znajduje upodobanie w Kartezjuszu. Następnego dnia zauważył jednak ze zgrozą, że idzie z tym w parze kompletna nieznajomość Arystotelesa: „Co do czterech właściwości czterech elementów, powiedział, że nic o tym nie wie, bo nie czytał Arystotelesa. Kartezjusz zasię nie uznaje takich rzeczy”. Taka nonszalancja wobec tradycji rozgniewała starszego pana Pepysa. Domyślać się można, że pomieszanie wśród systemów filozoficznych musiało często owoco­wać sporym zamieszaniem w głowach.

Newton zaczął czytać podstawowe dzieła nowej filozofii około roku 1664. W jego notatkach nowa i stara wiedza wymownie sąsiadują ze sobą: z Physiologiae peripateticae (Fizjologia perypa­tetyczna), tj. fizyki arystotelesowskiej Magirusa, przepisuje dane na temat obrotów planet, a z którejś z nowych książek – średnice kątowe gwiazd według Galileusza. Bardzo niewielkie kątowe rozmiary gwiazd świadczyły o tym, że są one daleko od Ziemi. Było to zgodne z teorią Kopernika, która przewidywała większe rozmiary świata, niż przyjmowano tradycyjnie.

Wkrótce Newton zaczął czytać dzieła filozoficzne Kartezjusza – i tym razem nie zarzucił lektury w połowie. Posiadał łacińskie wy­danie dzieł Kartezjusza zawierające Medytacje, Rozprawę o metodzie wraz z Dioptryką i Meteorami (ale bez Geometrii), Zasady filozofii oraz Namiętności duszy. Pod koniec życia Newton zwierzał się, że przez pewien czas był kartezjanistą.

Wkrótce też zetknął się z ideami Gassendiego, przeczytał Dialog o dwu najważniejszych układach świata Galileusza, zapoznał się z dziełami Boyle’a, Hobbesa, Digby'ego, Glanvilla i More'a. Z książki Streete'a Astronomia carolina poznał prawa Keplera.

Notatnik z wypisami z Arystotelesa przekształcił się w encyklo­pedię nowo zdobytej wiedzy, która była uporządkowana przez wpisywanie jej pod odpowiednie nagłówki. Tytuł całości brzmiał Quaestiones quedam philosophiae (Pewne kwestie filozofii). Mieściło się w tych ramach praktycznie całe królestwo przyrody, indeks sporządzony przez Newtona zawiera bowiem takie hasła, jak anty­patia, powietrze, pamięć, meteory, przyciąganie (magnetyczne i elektryczne), atomy, kolory, ziemia, wieczność, Bóg, kondensacja, sny, przypływy i odpływy, twardość, wilgotność, wyobraźnia, światło, planety, załamanie światła, wrażenia zmysłowe, wiry, sympatie, wzrok.

Jednym z podstawowych pytań, jakie za autorami czytanych dzieł stawiał sobie Newton, było – Czym jest materia, czy składa się z atomów, czy jest rozciągłością? Niemal od razu skłaniał się do odpowiedzi atomistycznej, choć Quaestiones nie są jeszcze apody­ktyczne w tonie i w dużej mierze tylko referują cudze poglądy.

Od początku jednak Newton nie był czytelnikiem bezkry­tycznym – wysuwał np. wiele argumentów przeciw Kartezjańskiej teorii światła czy wyjaśnieniu zjawiska przypływów. Myślał również, jak zaprząc ruch niewidzialnych cząstek eteru do użytecznej pracy w perpetuum mobile. Pomysł taki był naturalny – wiecznie po­ruszająca się maszyna byłaby przecież częścią stale poruszającej się maszyny świata, gdzie krążyła wciąż materia. Uważał wtedy, że grawitacja jest spowodowana czymś w rodzaju deszczu spadających cząstek eteru. Gdyby udało się skonstruować ekran osłaniający przed tym deszczem jedną połowę koła umocowanego na osi, to druga połowa jako zawsze cięższa musiałaby przeważać i wywo­ływać obrót całości, podobnie jak w kole młyna wodnego. Zastanawiał się również, czy światło, jeśli składa się z cząstek, jak skłonny był sądzić za Gassendim, nie mogłoby poruszać ciał podobnie jak wiatr porusza skrzydła wiatraka. Widać w tych pomysłach doświadczenia majsterkowicza z Grantham przeniesione na grunt bardziej abstrakcyjny. Filozofia mechanistyczna pozwalała wyobrazić sobie, co może lub powinno się stać w danej sytuacji, pomagała w wyobrażaniu sobie eksperymentów myślowych. Dawała też, przynajmniej w zasadzie, możliwość doświadczalnego sprawdzenia wniosków.

Kartezjusz podniósł filozofię mechanistyczną na poziom abstrak­cyjny, żądając spełnienia jasnych zasad. Newton miał wątpliwości co do objaśnienia przez Kartezjusza konkretnych zjawisk, np. światła, nie wątpił jednak, że w każdym wypadku należy szukać jakiegoś mechanizmu korpuskularnego. Również rozdzielenie pos­trzeżeń zmysłowych i tego, co je wywołuje, było niekwestio­nowanym przez Newtona osiągnięciem nowej filozofii. Nauka miała zajmować się osobno zachowaniem ciał, a osobno pochodzeniem naszych doznań. Jak pisał:

Naturę rzeczy wyprowadza się pewniej i bardziej naturalnie z działania jednych rzeczy na drugie niż z ich działania na nasze zmysły; cyt. w [40].

Szło za tym zainteresowanie fizjologią. Newton przeprowadzał sekcje serca węgorza, obserwując, jak po rozcięciu jego trzy części pulsują nadal w zgodnym rytmie. Gdy zainteresował się optyką oraz mechanizmami widzenia, badał reakcję na deformowanie szpi­kul­cem własnej gałki ocznej (pojawiają się wtedy barwne koła). W innym eksperymencie patrzył w słońce tak intensywnie, że nastę­p­ne trzy dni musiał spędzić w zaciemnionym pokoju, usiłując nie myśleć o słońcu, aby nie wracał jego oślepiający powidok. Eksperyment był prawdopodobnie związany z chęcią przekonania się, czy rzeczywiście wrażenia wzrokowe wywołane są jakimś ruchem w nerwach – silny ruch może trwać jeszcze długo po ustaniu bodźca.

Pewne myśli i tematy, które będą się później przewijać przez jego prace, ustaliły się już w tym najwcześniejszym okresie, jak na przykład prosta konstatacja, że coś, co jest przyczyną ciężkości (eter ?), musi przenikać całe ciało, ciężar jest bowiem propor­cjonalny do objętości, a nie do powierzchni. Wtedy też zaczął myśleć o świetle jako zbiorze cząstek. Zainteresował się również zjawiskami przylegania, włoskowatości, napięcia powierzchniowego i ciśnienia (sprężystości) powietrza, które będą wielokrotnie przy­wo­ływane w jego pismach. Innym zagadnieniem powracającym wielokrotnie w rozważaniach Newtona są chemiczne powino­wactwa z wyboru: np. rtęć rozpuszcza metale, lecz nie rozpuszcza się w wodzie, olej natomiast nie rozpuszcza metali i nie rozpuszcza się w wodzie.

Zimą 1664/65 Newton dołączył w symboliczny sposób do między­narodowej wspólnoty uczonych obserwując z wielkim za­pa­łem kometę. Obserwowali ją wtedy m.in. Domenico Cassini, Christiaan Huygens, Gian-Alfonso Borelli i Jan Heweliusz.

Jeśli rzeczywiście Newton przejściowo był kartezjanistą, to w każ­dym razie nie trwało to długo. Później skłaniał się raczej ku opinii More'a, że Kartezjusz de facto nie potrzebuje Boga w swoim systemie świata. Newton i More nie zgadzali się z poglądem, iż same tylko wzajemne oddziaływania cząstek mogłyby prowadzić z czasem do powstania takiego świata, jaki znamy. Był to dla nich epikureizm, w którym nie ma miejsca dla Stwórcy.

Henry More z Christ's College nie tylko był jednym z pierwszych filozofów w Cambridge, którzy znali i zalecali filozoficzne dzieła Kartezjusza, ale również polecał swoim studentom czytać jego dzie­ła matematyczne, takie jak Dioptrykę. Jeszcze pokolenie wcześniej I. Barrow stwierdził, że matematyka jest w Cambridge zaniedbana i zupełnie nieznana. Do czasów Newtona niewiele się pod tym względem zmieniło. W 1660 r. przyrodnik (również z Trinity – jak Barrow i Newton) John Ray narzekał na brak zainteresowania naukami eksperymentalnymi oraz matematyką. Henry More i pod tym względem był wyjątkiem wśród tutorów.

Mniej więcej jednocześnie z nową filozofią Newton odkrył matematykę. Początkiem miało być kupno książki o astrologii na jarmarku w Sturbridge w 1663 roku, w której napotkał nie znane pojęcia matematyczne. Kupił więc Geometrię Euklidesa, która z początku wydawała mu się trywialna, potem jednak, gdy doszedł do twierdzeń trudniejszych, takich jak twierdzenie o jednakowym polu równoległoboków o wspólnej podstawie i równej wysokości czy twierdzenie Pitagorasa, zmienił zdanie i uważnie przestudiował książkę.

Najprawdopodobniej w połowie roku 1664 Newton przeczytał Geometrię Kartezjusza w wydaniu Schootena. Tym razem nie chodziło o szkolny podręcznik, lecz o książkę trudną nawet dla tych, którzy uważali się za matematyków. Przedzierał się przez nią z najwyższym trudem, co kilka stron przestając rozumieć, mimo to udało mu się dobrnąć do końca; gdy to zrobił, raz jeszcze przeczytał Euklidesa i ponownie Kartezjusza – opis ten, pozo­stawiony przez Abrahama de Moivre'a, jest prawdopodobny. Newton praktycznie bez systematycznego przygotowania opanował najtrudniejszą matematykę swoich czasów, pracując sam, bez niczy­jej pomocy. Wiele lat później Newton rekomendując pewnego matematyka podkreślał, iż tamten jest w matematyce samoukiem, a to najpewniej dowodzi jego talentu.

Wkrótce przeczytał Wallisa Arithmetica infinitorum, 1656  (Arytmetyka nieskończonych) i latem następnego 1665 roku potrafił już za pomocą odkrytego przez siebie szeregu z ogromną dokład­nością obliczyć pole powierzchni ograniczonej hiperbolą.

Matematyka była pierwszą dziedziną, w której geniusz Newtona objawił się imponująco. Talenty matematyczne z reguły ujawniają się wcześnie – „żaden stary człowiek (wyjąwszy dr. Wallisa) nie lubi matematyki” – jak wiele dziesiątków lat później zauważył senten­cjonalnie sam Newton. Błyskawiczny sukces w dziedzinie tak wymagającej i jednocześnie tak dalece niezależnej od subiek­tywnych ocen był mu potrzebny szczególnie – jako potwierdzenie powołania i podstawa poczucia własnej wartości. Być może zade­cydował też o kierunku przyszłych poszukiwań Newtona, uświa­da­miając mu siłę matematyki oraz jego własną sprawność w posłu­giwaniu się nią.

Newton nie był jedynym matematykiem w Trinity, ponieważ w 1664 r. nowo utworzoną katedrę matematyki Lucasa objął Izaak Barrow. W okresie Republiki Barrow występował w obronie nauki przed pobożnym zapałem niektórych purytanów i nie krył sympatii rojalistycznych. Aby uniknąć konfliktu, wyjechał w kilkuletnią podróż do Francji, Włoch i na Bliski Wschód, z której wrócił niedługo przed restauracją monarchii. Został nagrodzony za wierność najpierw katedrą greki, a później katedrą matematyki. Barrow był duchownym, znawcą języków klasycznych (łącznie z hebrajskim i pewną znajomością arabskiego), lecz „stwierdziwszy, że aby zostać dobrym teologiem, musi znać chronologię, a chro­nologia wymaga astronomii, astronomia zaś matematyki, zajął się tą ostatnią ze znacznym powodzeniem”.

Tradycyjnie uważano Barrowa za nauczyciela Newtona. Okazuje się jednak, że brak podstaw do takiego poglądu. Newton czytał Elementy Euklidesa w wydaniu Barrowa, chodził na jego wykłady (choć nie bardzo później pamiętał ich treść), być może pożyczał od niego książki. Praca Newtona była jednak samodzielna i Barrow z opóźnieniem dowiadywał się o jej zasięgu i szczegółach. Barrow miał odegrać sporą rolę w dalszym życiu Newtona, ale nie jako nauczyciel, lecz jako wpływowy i życzliwy protektor, który umiał docenić rangę osiągnięć Newtona lepiej niż inni w Cambridge.

Brak zainteresowania oficjalnym programem studiów nie przesz­kodził Newtonowi w osiąganiu kolejnych szczebli akademickich. W 1664 r. otrzymał stypendium, które umożliwiło mu kolejne cztery lata studiów, w 1665 r. został bakałarzem sztuk, wreszcie w 1667 r. wybrano go na członka kolegium (fellow), co w praktyce oznaczało zapewnione utrzymanie i całkowitą swobodę wyboru zajęcia. W roku 1667 Newton miał już w matematyce, mechanice i optyce bardzo poważne osiągnięcia, większe niż ktokolwiek w Anglii. O wynikach tych nie wiedział jednak prawdopodobnie nawet Barrow, i to nie dzięki nim Newton został członkiem kolegium. Zapewne ktoś z talentem i moralnością Newtona musiał być łatwo zauważalny na szarym tle swoich kolegów, z których żaden niczym się nie wyróżnił w przyszłości. Kwalifikacje moralne nie zawsze jednak decydowały o awansach w ówczesnym Cambridge, a talent do nauk matematycznych nie był tym rodzajem zdolności, jakich ktokolwiek mógłby oczekiwać od studenta. Sprawę przesądziło najprawdopodobniej poparcie dr. Babingtona, ziomka z Lincoln­shire i człowieka praktycznego, który przez wiele lat potrafił godzić funkcję w kolegium z probostwem w Boothby Pagnell, co według suchej litery statutów było niemożliwe. Pomyślny dla Newtona przebieg wyborów z roku 1667 rozstrzygnął być może o jego dalszych losach. Inną ewentualnością byłoby jakieś beneficjum lub parafia na wsi i najprawdopodobniej odcięcie na resztę życia od nauki.

powrót do strony głównej