Robert Hooke krytykując hipotezę, że światło jest zbiorem cząstek, zdawał sobie sprawę z licznych trudności takiego poglądu. Światło rozchodzi się bowiem po liniach prostych z ogromną prędkością i bez trudu przenika nawet grube warstwy przezroczystej materii – cząstkom świetlnym należałoby zatem przypisać wiele niezwykłych właściwości. Ponadto świecące ciała, takie jak Słońce, stale traciłyby swą materię.
Hooke nie zgadzał się też z teorią Kartezjusza, odkrył bowiem zjawiska z nią niezgodne. Wśród eksperymentów opisanych w Mikrografiach znalazły się obserwacje barwnych pasów lub pierścieni w cienkich płytkach miki, warstewkach na powierzchniach metali, bańkach mydlanych i cienkich bańkach szklanych. Barwy te występowały niezależnie od bliskości cienia, występowały również i wtedy, gdy płytka była płaska, a więc dwa kolejne załamania przechodzącego światła kompensowały się nawzajem – a zatem w sytuacjach, w których według Kartezjusza barwy nie powinny się pojawiać. Zjawisko barw w cienkich warstewkach potraktował Hooke jako experimentum crucis obalające teorię światła Kartezjusza.
Badając pojawianie się barw w cienkich płytkach Hooke zauważył, że obserwowana barwa zmienia się z grubością płytki w sposób okresowy przechodząc od czerwieni do niebieskiego przez barwy pośrednie. Aby zjawisko wystąpiło, grubość płytki musi zawierać się pomiędzy pewną wartością maksymalną a minimalną. Wartości liczbowych tych grubości nie udało się jednak Hooke'owi ustalić żadnym ze swych mikroskopów.
Hooke uważał, że światło jest rodzajem ruchów drgających lub impulsów rozchodzących się w materii wypełniającej świat – w eterze. Oprócz własnych doświadczeń powoływał się na fakty relacjonowane przez innych, prawdziwe lub nie, jak na przykład to, że diament uderzony lub potarty świeci jeszcze przez pewien czas. Barwy w płytkach objaśniał nakładaniem się impulsów odbitych od dolnej powierzchni, a więc słabszych, na silniejsze impulsy odbite od powierzchni górnej. Gdy grubość płytki jest niewielka, opóźnienie słabszego impulsu też jest niewielkie i oba składają się na jeden impuls złożony, którego tylna część jest nieco osłabiona w stosunku do przedniej. Daje to wrażenie barwy żółtej. Gdy zwiększymy trochę grubość płytki, opóźnienie również się powiększy – i taki impuls będzie odbierany jako czerwony. Przy dalszym zwiększaniu grubości osiągniemy takie opóźnienie, przy którym osłabione impulsy będą przypadać dokładnie w połowie drogi pomiędzy impulsami mocniejszymi, co odpowiada fioletowi. Gdy grubość powiększy się jeszcze bardziej, impulsy osłabione będą wyprzedzać impulsy mocne i takie blisko leżące pary będą dla oka stanowić znów jeden impuls złożony, lecz tym razem jego przednia część będzie słabsza niż tylna, co odpowiada barwie niebieskiej. Podobny efekt na ukształtowanie impulsów świetlnych miałoby załamanie wiązki światła. Impulsy wcześniej wnikające w nieruchomy dotąd ośrodek miałyby słabszą przednią część i tym samym odpowiadałyby barwie niebieskiej, tak jak to się obserwuje. Podobnie wyjaśnić można było czerwoną barwę drugiego krańca wiązki.
Wyjaśnienie Hooke'a jest przykładem pomysłowej hipotezy mechanistycznej, która pozostaje wyłącznie luźną spekulacją, wymyśloną jakby dla wykazania, że nawet niezwykłe, dalekie na pozór od mechaniki zjawiska można sprowadzić do ruchu cząstek. Hipoteza Hooke’a objaśniała zjawiska w cienkich warstewkach, które trudno opisać za pomocą cząstek światła. Hooke uważał to za mocny argument przeciw poglądom Newtona. Oczywiście teoria Hooke'a była zupełnie bezradna wobec ilościowych szczegółów zjawisk. Nie mogła też wyjaśnić Newtonowskiego experimentum crucis – dlaczego światło jednobarwne nie rozszczepia się pod wpływem załamania.
Hooke nie wiedział, że już w chwili opublikowania teorii barw, Newton miał za sobą intensywne badania zjawisk w cienkich warstwach. Wyprowadzał z nich jednak zupełnie inne wnioski. Dopiero w 1675 r. zdecydował się przesłać Towarzystwu Królewskiemu (nie zgadzając się na jej druk) rozprawę poświęconą zjawiskom barwnym w cienkich płytkach. Przesłał też jednocześnie hipotezę objaśniającą te oraz inne zjawiska pt. An Hypothesis explaining the Properties of Light, Discoursed of in my several Papers (Hipoteza objaœniaj¹ca w³aœciwoœci œwiat³a dyskutowane w kilku moich rozprawach). Zgodnie ze swą zasadą bezpośrednie wnioski z doświadczeń oddzielił od spekulacji teoretycznych. Część eksperymentalna miała z czasem wejść do drugiej księgi Optyki.
Ryc. 14 Pierścienie Newtona |
Newton nie ograniczył się do samej obserwacji barw, lecz starał się wyznaczyć grubości warstewek. Ponieważ grubości te są bardzo małe, bezpośredni pomiar nie wchodził w grę. Dlatego Newton skoncentrował się na jednym przypadku: barwnych pierścieni powstających, gdy wypukłą soczewkę o małej krzywiźnie umieścimy na szklanej płytce (ryc. 14). Mierząc (stosunkowo duże) średnice pierścieni można za pomocą elementarnej geometrii obliczyć grubości warstw powietrza odpowiadające kolejnym pierścieniom. Jest charakterystyczne, że eksperyment ten znany był Hooke'owi, wykonywał go również Huygens, ale jedynie Newton zanalizował go ilościowo i chyba słusznie pierścienie te znane są jako pierścienie Newtona.
Dokładność uzyskana przez Newtona w pomiarach średnicy pierścieni, prowadzonych gołym okiem, jest niewiarygodna: rozbieżności rzędu jednej czy dwóch setnych cala tak długo nie dawały mu spokoju, aż wykrył przyczynę błędu. Huygens zajmując się tym zjawiskiem nie umiał odnaleźć w nim żadnych prawidłowości matematycznych, obserwował zresztą zaledwie kilka pierścieni.
Newton, w przeciwieństwie do Huygensa i Hooke'a, miał swoją teorię barw i dlatego do wytwarzania pierścieni użył światła jednorodnego fizycznie, czyli jednobarwnego, które uzyskiwał przez rozproszenie odpowiedniego fragmentu widma pryzmatycznego na białej kartce papieru. W świetle jednobarwnym widział nie kilka, lecz kilkadziesiąt pierścieni, co pozwoliło mu dostrzec matematyczną regularność w ich występowaniu. Obserwacje w świetle białym łatwo już było wyjaśnić jako efekt nakładania się barw. Również ścisła zależność między barwą pierścieni w świetle przechodzącym i odbitym (barwy dopełniające) dawała się objaśnić nakładaniem barw i przechodzeniem bądź odbiciem każdej z barw.
Mając tak słabe źródło światła Newton potrafił zmierzyć zależność średnicy pierścieni od barwy i numeru pierścienia. Okazało się, że pierścienie występują wtedy, gdy grubość warstewki powietrza między soczewką a szklaną płytką spełnia prosty warunek. Każdej barwie pryzmatycznej odpowiada nie tylko określony współczynnik załamania, ale również pewna charakterystyczna odległość. Przy grubości warstwy powietrza 1, 3, 5 itd. razy większej od tej charakterystycznej odległości obserwuje się pierścienie dla światła odbitego. Dla wielokrotności 2, 4, 6 itd. obserwuje się natomiast pierścienie w świetle przechodzącym. Stwierdził też, że zastąpienie powietrza innym ośrodkiem powoduje zmniejszenie się pierścieni. Odpowiednie grubości charakterystyczne zmniejszają się wtedy w stosunku współczynnika załamania. Dla światła na granicy żółtego i pomarańczowego w powietrzu grubością charakterystyczną jest 1/178 000 cala. Interpretując wynik Newtona za pomocą współczesnej teorii otrzymujemy dla długości fali światła wartość 0,57 mm, co rzeczywiście odpowiada wskazanej barwie i świadczy o dokładności jego pomiarów.
Prawidłowości występujące w zabarwieniu pierścieni czy cienkich płytek nie były jednak ostatecznym celem Newtona. Niemal natychmiast uogólnił wyniki swoich obserwacji, wierząc, iż wciąż pozostaje na bezpiecznym gruncie faktów empirycznych.
Bo, jak przypuszczam, gdyby płytka o stałej grubości, a co za tym idzie, o jednolitej barwie, została rozbita na części tej samej grubości co płytka, mnogość takich części byłaby proszkiem o barwie takiej samej niemal jak płytka [50].
Wyniki uzyskane dla pierścieni posłużyć więc miały teraz do objaśnienia, dlaczego ciała występujące w przyrodzie mają takie, a nie inne barwy. W teorii Newtona barwa światła odbijanego przez dane ciało informuje wprost o rozmiarach cząsteczek tego ciała i odstępów między tymi cząsteczkami. Tak więc najmniejsze cząsteczki mają ciała czarne – ich cząsteczki są zbyt małe, aby odbijać jakiekolwiek światło, nawet fiolet, o najmniejszej odległości charakterystycznej. Przytaczał tu m.in. swoje obserwacje baniek mydlanych, które stają się coraz cieńsze na szczycie, w miarę jak woda ścieka na dół. Barwne pierścienie przesuwają się również w dół, towarzysząc zmianom grubości, aż w końcu wierzchołek bańki staje się czarny. Wnioski te zgodne były z oczekiwaniami Newtona, ponieważ na przykład ogień i gnicie powodują rozpad cząsteczek na mniejsze, a przy tym wywołują często poczernienie ciał.
Gdy cząsteczki par zgęszczają się i łączą ze sobą, najpierw osiągają wielkość, przy której odbijają światło niebieskie i nie odbijają żadnego innego. Dlatego to lazur jest barwą najczystszego i najbardziej przezroczystego nieba. W podobny sposób udało się Newtonowi znaleźć wyjaśnienie właściwości wyciągu z fiołków, który w kwasach zmienia kolor na czerwony, a pod działaniem moczu i alkaliów na zielony. Również zmiana zielonego koloru roślin na kolor żółty i czerwony pod wpływem wysychania potwierdzała zdaniem Newtona jego teorię.
Na podstawie swych wyników Newton szacował, że przy powiększeniach mikroskopu rzędu 500-600 (powiększenia mikroskopów Hooke'a wynosiły 30-40 razy) będzie można już dostrzec największe z cząsteczek tworzących materię.
Wszelako przydałoby to nam wiele zadowolenia, gdybyśmy mogli odkryć te cząsteczki za pomocą mikroskopu, co, jeśli uda się kiedykolwiek osiągnąć, będzie, obawiam się, ostatnim ulepszeniem tego rodzaju; bo niemożliwe wydaje się ujrzenie bardziej tajemnych i szlachetnych operacji natury wewnątrz tych cząsteczek z powodu ich przezroczystości [50].
Materię wyobrażano sobie zazwyczaj jako zbudowaną na podobieństwo gąbki złożonej z cząsteczek i porów między nimi. Trudno było inaczej wyjaśnić ogromną rozpiętość gęstości między powietrzem a najcięższym znanym metalem – złotem. Newton uważał, że materia ma stałą gęstość, a różnice w obserwowanej gęstości ciał biorą się z różnej proporcji porów i materii wewnątrz tych ciał.
Jednocześnie jego teoria barwy ciał wymagała, aby ciała przezroczyste miały niewielkie zarówno pory, jak i cząsteczki. Dlatego Newton obmyślił schemat hierarchicznej budowy materii. Najmniejsze, elementarne cząstki materii miały być doskonale twarde i niezmienne od chwili stworzenia. Z tych cząstek elementarnych zbudowane miały być większe cząsteczki, a z nich jeszcze większe itd., tak że na każdym piętrze hierarchii cząsteczka składała się w połowie z cząsteczek poprzedniego piętra, a w połowie z porów. W ten sposób na n-tym piętrze proporcja porów do materii równa była 2n – 1:1.
Oczywiście trudno dziś uznać wszystkie rozważania tego rodzaju za równie pewne jak teoria barw. Odgraniczenie hipotez i domysłów od ścisłych wniosków nie jest łatwe i linia demarkacyjna miała zostać w przyszłości przesunięta. Newton zdawał sobie zresztą sprawę, że nie wszystkie jego twierdzenia są jednakowo pewne i że np. uogólnienie obserwacji pierścieni na barwy wszelkich ciał w przyrodzie nie jest bezpośrednim wnioskiem z eksperymentu, choć wydawało mu się ono wielce prawdopodobne. Obecnie wiemy, że tylko w niektórych przypadkach barwy ciał są związane z rozmiarami i ułożeniem ich części, tak jak sądził Newton. Przypadki takie nie są typowe, choć należą do nich niektóre z najpiękniejszych w przyrodzie: np. barwy pawich piór albo błękit motyla Morpho. Rozważania zaś w rodzaju hierarchicznej budowy materii są już typowym budowaniem modeli ad hoc w celu objaśnienia znanych faktów, co było ulubionym zajęciem uczonych XVII wieku.