Spory z Flamsteedem miały znaczenie tylko dla wąskiego kręgu uczonych angielskich. Dużo większy zasięg miała inna kontrowersja, w której Newton był stroną – spór z Leibnizem o pierwszeństwo odkrycia rachunku różniczkowego albo, jak nazywali go zwolennicy Newtona, rachunku fluksji.
Wśród szerokich zainteresowań Gottfrieda Wilhelma Leibniza matematyka odgrywała rolę wyjątkową. Podobnie jak Kartezjusz uważał on matematykę za wiedzę najpewniejszą i szukał sposobu rozszerzenia tej pewności na inne dziedziny. W liście do Oldenburga w 1675 r. pisał:
nadejdzie taki czas i nadejdzie już wkrótce, że będziemy posiadali wiedzę o Bogu i umyśle, nie mniej pewną niż ta dotycząca figur i liczb, i dzięki której wynajdywanie nowych maszyn nie będzie trudniejsze niż konstruowanie zadań w geometrii [43].
Nowa wiedza wymagała nowego języka do jej wyrażenia i Leibniz, podobnie jak Newton na początku swych studiów, poszukiwał takiego uniwersalnego języka. Poszukiwania takie były dość powszechne. W Anglii zajmowali się nimi Seth Ward, John Wallis, John Wilkins i młody Newton.
Leibniz oczekiwał, że język taki ograniczyłby obszary możliwych sporów. W szczególności kontrowersje religijne szybko okazałyby swój pozorny charakter. Myślenie zostałoby przekształcone w rodzaj rachunku, a filozofowie mogliby rozstrzygać spory biorąc pióra do ręki i wykonując stosowny rachunek.
Leibniz zajął się intensywnie matematyką dopiero po swym przyjeździe do Paryża w 1672 r. Zetknął się tam z najwybitniejszymi uczonymi Europy, w tym z Huygensem, od którego wiele się nauczył. Po kilku latach, jesienią 1675 r., zbudował swoją wersję rachunku różniczkowego i rozwinął zapis, niewiele zmieniony do dziś. Leibniz doszedł do swego rachunku różniczkowego od rozważań algebraicznych i arytmetycznych: różniczki były skrajnym przypadkiem różnic, a całki powstawały z sumowania różniczek. Rozważania kinematyczne nie odgrywały tu roli.
Leibniz, admirator angielskiej nauki, jeszcze w 1673 r. został członkiem Towarzystwa Królewskiego. Zaprezentował wówczas nie dokończony model arytmometru, zbudowanego po zapoznaniu się z podobnym przyrządem Pascala. Od tamtego czasu Leibniz utrzymywał kontakt z Oldenburgiem. Interesował się matematyką brytyjską, znał niektóre osiągnięcia Gregory'ego i Newtona w teorii szeregów.
W 1676 r. Leibniz zwrócił się do Oldenburga z pytaniem o dowód Newtonowskich rozwinięć w szereg funkcji sinus i arcus sinus. Same rozwinięcia dotarły do niego okrężną drogą od Collinsa. Newton, poproszony zarówno przez Oldenburga, jak i Collinsa, odpowiedział Leibnizowi, przesyłając list na ręce Oldenburga. Był to pierwszy z dwóch listów przeznaczonych dla Leibniza, znanych w historii jako Epistola prior i Epistola posterior.
W Epistola prior Newton przedstawił przykłady rozwinięć za pomocą dwumianu oraz stosowania algorytmów różniczkowania i całkowania bez przedstawiania ich zasady. Umieścił również aluzję do mocniejszych metod, których jednak nie przedstawił.
Leibniz dopiero z tego listu zorientował się w poziomie osiągnięć matematycznych Newtona. Zadał mu następne pytania, nie szczędząc pochwał pod adresem jego geniuszu. Zanim jeszcze Newton zdążył odpwiedzieć, Leibniz w drodze z Paryża do Hanoweru zatrzymał się w Londynie, gdzie rozmawiał z Collinsem. Collins nie był równym partnerem do rozmów z matematykiem tej rangi co Leibniz, miał jednak w archiwum rękopis De analysi Newtona i niektóre prace Jamesa Gregory'ego, które mu udostępnił. Notatki Leibniza z tych rękopisów dotyczą jednak tylko teorii szeregów, rachunek różniczkowy nie był już w tym czasie dla Leibniza niczym nowym.
Collins nigdy nie przyznał się do popełnienia niedyskrecji, również Leibniz nie przyznał się do oglądania rękopisu Newtona. Miało to dla niego przykre następstwa, ponieważ później Newton domyślił się, że Leibniz czytał jego rękopis i zinterpretował to w sposób jak najbardziej niepochlebny dla Leibniza.
Collins namawiał Newtona do publikacji, ostrzegał, że rezultaty Leibniza (przedstawione częściowo w odpowiedzi na Epistola prior) mogą się okazać bardziej ogólne, Newton jednak zdawał się pewien swej przewagi. Miał również dosyć dyskusji wywołanych teorią barw i odżegnywał się od publikowania czegokolwiek. W Epistola posterior Newton przedstawił dalsze przykłady rozwinięć w szeregi i zasygnalizował ogólną metodę pozwalającą badać ekstrema funkcji. Jej podstawowe założenia przedstawił w postaci anagramu:
6accdae13eff7i3l9n4oqrr4s8t12ux.
Anagramy były przyjętym sposobem zapewnienia sobie pierwszeństwa bez ujawniania samego odkrycia, które nie ujawnione mogło prowadzić do dalszych osiągnięć. Można było też opublikować wynik, zanim jeszcze było się go absolutnie pewnym. W ten sposób Galileusz opisał po raz pierwszy dziwaczny kształt Saturna, który przez jego obarczoną wadami optycznymi lunetę wydawał się planetą potrójną. Również anagramem opisał później Huygens swoje odkrycie rzeczywistego wyglądu Saturna, tj. że planetę otacza cienki pierścień, który do niej nie przylega. Łaciński anagram Newtona oznaczał po rozszyfrowaniu: „mając równanie zawierające dowolną liczbę fluent znaleźć fluksje, i vice versa”.
Oczywiście zdanie to nawet po rozszyfrowaniu (co miało nastąpić dopiero w Principiach) mówiło niewiele, dopóki nie wiedziało się, co znaczą fluksje i fluenty w języku Newtona. Leibniz otrzymał list Newtona dopiero w czerwcu 1677 r. i w napisanej natychmiast odpowiedzi przedstawił niektóre ze swoich wyników. Po miesiącu napisał ponownie. We wrześniu tego roku zmarł Oldenburg, pośrednik w korespondencji, i Newton nie odpisał na żaden z dwóch listów. Korespondencja się urwała.
Dopiero w 1684 r. Leibniz opublikował swój rachunek jako krótki artykuł w „Acta Eruditorum” pt. Nova methodus pro maximis et minimis itemque tangentibus, quae nec fractac nec irrationales quantites moratur, et singulare pro illis calculi genus (Nowa metoda maksimów i minimów, a także stycznych, której nie opierają się wielkości ani ułamkowe, ani niewymierne, tudzież szczególny dla nich rodzaj rachunku). Dwa lata później opublikował następny artykuł zawierający obliczanie całek (nazywanych sumami) jako działanie odwrotne względem różniczkowania.
Nowy rachunek nie od razu zaczął sobie zdobywać popularność. Huygens np. nie dostrzegł pożytku w symbolice Leibniza. Sytuacja zmieniła się, gdy rachunkiem zainteresowali się bracia Jakob i Johann Bernoulli. Od tego drugiego z rachunkiem różniczkowym zapoznał się markiz de L'Hôpital. W ostatniej dekadzie XVII w. rachunek różniczkowy i całkowy zaczął dostarczać bardzo wielu nowych wyników i stopniowo zaczęto rozumieć, jak wielkie jest jego znaczenie.
W 1691 r. Newton zaczął pisać traktat De quadratura curvarum (O kwadraturze krzywych), w którym pokazywał wiele zastosowań swojej metody fluksji. Po raz pierwszy zastosował tam zapis fluksji za pomocą kropek nad symbolem fluenty, do dziś czasem jeszcze używany w mechanice. Notacja ta była odpowiedzią Newtona na zapis Leibniza, który zresztą okazał się wygodniejszy. Traktat O kwadraturze podsumowywał osiągnięcia Newtona w zakresie analizy, lecz podobnie jak poprzednie prace nie od razu ukazał się w druku i nie zdołał wpłynąć na rozwój matematyki.
Tymczasem na kontynencie analizę uważano za odkrycie Leibniza. Priorytet Leibniza pierwszy zakwestionował Fatio de Duillier. Już w roku 1691 Fatio napisał do Huygensa, że jak wynika z papierów Newtona, znał on rachunek różniczkowy dużo wcześniej, nim Leibnizowi w ogóle przyszła do głowy jego idea. Z kolei Johann Bernoulli wyrażał w listach do Leibniza przypuszczenie, iż to Newton zapożyczył swoją metodę fluksji od Leibniza.
W 1697 r. do Newtona dotarły dwa problemy-wyzwania postawione matematykom Europy przez Johanna Bernoulliego. Bernoulli pragnął w ten sposób wykazać wyższość stosowanych przez siebie metod pochodzących od Leibniza. Jednym z problemów było znalezienie kształtu krzywej, po której ciało ześlizguje się bez tarcia w najkrótszym czasie, tzw. brachistochrony. Zagadnienie to różniło się od zwykłych zadań na maksima i minima funkcji. Chodziło bowiem nie o wyznaczenie minimum funkcji, lecz o znalezienie krzywej o zadanych własnościach – był to jeden z pierwszych problemów rachunku wariacyjnego.
Newton potraktował to wyzwanie niezwykle poważnie. Zanotował datę otrzymania listu i następnego dnia Charles Montague, przewodniczący Towarzystwa Królewskiego, otrzymał rozwiązania obu zadań. Praca zajęła Newtonowi około 12 godzin po trudnym dniu w mennicy. Zdaniem D. T. Whiteside'a, wydawcy matematycznej spuścizny Newtona, było to już oznaką upadku sił twórczych Newtona. Rozwiązanie posłane zostało anonimowo, jednak Bernoulli domyślił się autorstwa Newtona ex ungue leonem – po lwim pazurze, jak to elegancko sformułował, kryjąc rozczarowanie. Do tego właśnie incydentu nawiązywał Newton w liście do Flamsteeda, gdy pisał, że nie lubi być molestowany w kwestiach matematycznych przez cudzoziemców.
W 1699 r. Fatio (chcąc może ponownie zbliżyć się do Newtona) publicznie zaatakował Leibniza. Newton był bez wątpienia pierwszym i znacznie wcześniejszym odkrywcą, a czy Leibniz od niego coś zapożyczył, czy nie, powinni ocenić ci, którzy widzieli listy i inne papiery Newtona. „Skromniejszy” Newton został też przeciwstawiony szukającemu rozgłosu Leibnizowi.
Leibniz przyznawał, że wiedział o jakiejś metodzie stycznych Newtona, ale swój rachunek uważał za narzędzie znacznie doskonalsze, przypisując np. pewien błąd znaleziony w pracy Gregory'ego słabości metody fluksji. W Holandii opublikowano też listę błędów w Principiach znalezionych rzekomo przez nieżyjącego już Huygensa. W rzeczywistości była to lista sporządzona kiedyś przez samego Newtona i zawieziona przez Fatio do Holandii, gdzie odnaleziono ją wśród papierów Huygensa.
Można sobie wybrazić, że szczególnie wyczulony na wytykanie mu błędów Newton nie przyjął spokojnie tych publikacji. Zdecydował się wreszcie ogłosić traktat O kwadraturze, aby dowieść wysokiego poziomu swoich metod. Newton sugerował przy tym nie wprost, iż cała zawartość tego traktatu z analizy pochodzi z wczesnych lat siedemdziesiątych.
Z kolei w „Acta Eruditorum” ukazała się anonimowa recenzja, w której uznano fluksje za mniej więcej równoważne różniczkom Leibniza. Newton używał ich elegancko w Principiach, podobnie jak Fabri, gdy zastąpił swoimi „postępami ruchu” metodę Cavalieriego. Sformułowanie było starannie wyważone, jednak insynuacja plagiatu była wyraźna – Fabri znany był jako plagiator idei Cavalieriego. Autorem tekstu był oczywiście Leibniz, jak się domyślił Newton, a wykazali współcześni historycy.
Opinię angielską przedstawiał w 1703 r. George Cheyne w Fluxionum methodus inversa (Odwrotna metoda fluksji), gdzie stwierdził, że w ciągu ostatnich dwóch czy trzech dekad nie opublikowano w matematyce niczego, co nie byłoby trywialnym wnioskiem z wcześniejszego odkrycia Newtona. W 1710 r. student Gregory'ego, J. Keill, na łamach „Philosophical Transactions” stwierdził wprost, że metodę Newtona opublikował Leibniz zmieniając tylko zapis. W tym czasie opublikowano kilka wczesnych rękopisów Newtona pochodzących z papierów Collinsa, co również sugerowało, że Newton znał rachunek różniczkowy dużo wcześniej.
Leibniz poskarżył się Towarzystwu na Keilla. Zaczął też podejrzewać, że Keill działał nie w swoim imieniu. Od tej pory nie ukrywał swej niechęci do Newtona, choć jeszcze niewiele wcześniej obiektywnie i przychylnie zrecenzował dawne wykłady Newtona z algebry, opublikowane jako Arithmetica universalis. Rozpętała się na dobre „wojna filozofów”.
Dla Newtona liczyło się jedynie pierwszeństwo i twardo obstawał przy twierdzeniu, że „drugi odkrywca” nie ma żadnych praw. Było to dość typowe dla pedantycznie myślącego Newtona, który nie bardzo interesował się społecznymi skutkami swych odkryć i nie był skłonny do uznawania jakichkolwiek nieostrych podziałów. Leibniz bał się z kolei, że uznanie pierwszeństwa Newtona postawi go w dwuznacznej sytuacji: do tej pory nie wspominał, że widział u Collinsa rękopis De analysi.
W sporze z Keillem Leibniz popełnił błąd taktyczny, który świadczy jednak dobrze o jego wierze w uczciwość Towarzystwa Królewskiego. Nie chcąc być narażonym na oskarżenia ludzi w rodzaju Keilla, zwrócił się do Towarzystwa o rozsądzenie sprawy. Stwierdził przy tym wyraźnie, że sądzi, iż „znakomity odkrywca fluksji” sam doszedł do wyników podobnych do jego własnych.
Z punktu widzenia chłodnego rozsądku spór, jeśli jakimś cudem dotąd nie wygasł, powinien skończyć się teraz obustronnym uznaniem niezależności odkrycia. Byłoby to w dodatku zgodne z prawdą. Wszelako odwoływanie się do poczucia sprawiedliwości Towarzystwa zdominowanego przez swego przewodniczącego, i to takiego przewodniczącego jak Newton, było oględnie mówiąc nieostrożne. W miarę osłabienia sił twórczych Newton coraz bardziej zabiegał o konsolidację swego naukowego imperium i nie potrafił pogodzić się z myślą, że Leibniz mógłby niezależnie odkryć „jego” rachunek. Aby to wykazać, gotów był uruchomić wszelkie swoje umiejętności autokratycznego przewodniczącego i doświadczonego urzędnika.
W marcu 1712 Towarzystwo powołało komisję do zbadania sprawy. W jej skład wchodzili niemal wyłącznie zwolennicy Newtona oraz nieświadomy swej roli F. Bonet, przedstawiciel króla Prus w Londynie. Komisję tę Newton opisał jako złożoną z licznych i utalentowanych gentlemanów kilku narodowości. W mowie przed Towarzystwem Newton jak władca wielkiego mocarstwa stwierdził, że nie jest w tej sprawie agresorem, choć jest „pierwszym autorem”. Newton nie pozostawił zresztą komisji wiele do zrobienia: dokumenty wyszukał już wcześniej, a raport napisał sam, tak że już w końcu kwietnia komisja zakończyła działalność.
W sprawozdaniu stwierdzono, że Collins przedstawiał wyniki Newtona Leibnizowi, że sam Newton opisał w liście do Leibniza swoją metodę „w stopniu wystarczającym dla każdej inteligentnej osoby” (chodziło zapewne o anagram), że już wtedy metoda Newtona liczyła sobie kilka lat, że wreszcie rachunek różniczkowy jest niczym innym jak tylko odmiennym zapisem metody fluksji.
Dlatego uważamy, że właściwym pytaniem nie jest, kto wynalazł tę czy inną metodę, lecz kto był pierwszym wynalazcą metody; cyt. w [73].
Keill nie mógł więc nikogo obrazić, stwierdzając zgodnie z prawdą, że to Newton pierwszy odkrył rachunek. Towarzystwo bez głosu sprzeciwu zaakceptowało to sprawozdanie na swym posiedzeniu, a następnie wydrukowało je razem ze zbiorem stosownych dokumentów jako Commercium epistolicum D. Johannis Collins, et aliorum de analysi promota (Korespondencja p. Johna Collinsa i innych na temat upowszechnienia analizy). Dokumenty opatrzone były komentarzami przedstawiającymi Leibniza jako notorycznego plagiatora. Kradł wyniki Pascalowi, chwalił się kiedyś metodą, której nie miał, z trudem przetrawiał wyniki pochodzące od Newtona i przedstawiał je potem jako własne odkrycia. Komentarze stwierdzały również, że najważniejsze części Principiów były przesłane do Towarzystwa Królewskiego już w 1683 r. (tzn. wcześniej, niż powstała w ogóle myśl o napisaniu traktatu) – chodziło o datę poprzedzającą publikacje Leibniza. Newton (który był autorem książki podobnie jak przedtem sprawozdania) głosił teraz, że twierdzenia Principiów najpierw zostały wyprowadzone za pomocą metody fluksji, a następnie przekształcone do postaci geometrycznej, w jakiej znalazły się w Principiach. To ostatnie kłamstwo miało wyjątkowo twardy żywot i do niedawna sądzono powszechnie, że Newton rzeczywiście używał metody fluksji w pisaniu Principiów, a twierdzenia przekształcał potem do postaci geometrycznej jako pewniejszej.
Reputacja Leibniza była już jednak zbyt ugruntowana, aby bez zastrzeżeń uwierzono mitycznej komisji (która nie podpisała zresztą „swego” sprawozdania). Odpowiedzią Leibniza na Commercium była anonimowa ulotka z 1713 r. znana jako Charta volans (Pismo ulotne), ukrywająca miejsce swego wydania oraz drukarza, która zaczęła być rozpowszechniana w kręgach naukowych na kontynencie. Ulotka nie dodawała nowych faktów. Raz jeszcze podkreślała, że Newton nie opublikował nic na temat rachunku różniczkowego przed Leibnizem. Leibniz, który przedtem wierzył w niezależne odkrycie Newtona, skłania się teraz do wniosku, że praca Newtona jest jedynie naśladownictwem jego rachunku różniczkowego. Powoływano się przy tym na opinię „znakomitego matematyka”, którym był nie wymieniony z nazwiska Johann Bernoulli.
Spór wciągał coraz większą liczbę matematyków po obu stronach kanału La Manche. Pojawiły się również próby pogodzenia obu rywali. Próbował tego J. Chamberlayne, członek Towarzystwa Królewskiego i polityk zdający sobie sprawę, że wkrótce w Anglii zapanuje dynastia hanowerska, której doradcą był właśnie Leibniz. Próba ta rozsierdziła jeszcze bardziej Newtona, który nie widział niczego niesprawiedliwego w werdykcie komisji Towarzystwa i czuł się stroną obrażoną. Towarzystwo, którego liczne zebrania poświęcane były roztrząsaniu różnych aspektów sporu, tym razem nie chciało zająć się sprawą. Była ona najwidoczniej nie podzielaną powszechnie obsesją przewodniczącego.
Newton od kilku lat przepisywał i poprawiał wielokrotnie argumenty przeciw Leibnizowi dla Keilla, dla „komisji gentlemanów” i drukowanej wersji Commercium epistolicum. Ta ostatnia książka była rozpowszechniana w niewielu egzemplarzach, postanowił więc napisać jej podsumowanie. Ukazało się ono (oczywiście anonimowo) w „Philosophical Transactions” wypełniając niemal cały zeszyt, potem francuskie tłumaczenie tekstu wydrukowano w „Journal littéraire de la Haye”, a jego recenzję w „Nouvelles littéraires”. Wcześniej zaś na łamach tego samego „Journal littéraire” opublikowano anonimowy list z Londynu (autorstwa Keilla) przedstawiający angielską wersję historii, a w dalszych numerach odpowiedzi na ten list: francuską wersję Charta volans i inny anonimowy artykuł autorstwa Leibniza. Podnoszony był argument, że skoro Newton znał rachunek różniczkowy, to dlaczego nie użył go pisząc w 1687 r. swe najważniejsze dzieło Principia ?
Żadna ze stron nie miała dowodów przywłaszczenia wyników przez przeciwnika i jak wiemy to dzisiaj nie mogła mieć takich dowodów, chyba że byłyby sfabrykowane. Newton z uporem powtarzał kłamstwo o stosowaniu fluksji przy pisaniu Principiów. Minęło już niemal trzydzieści lat od ich napisania, a pół wieku od jego pierwszych prac na temat rachunku. Starzy ludzie często zmyślają w opowiadaniach własne życie i często wierzą niezachwianie we własne zmyślenia. Newtonowi udało się w dużej mierze narzucić swój własny obraz potomnym. Większość jego późnych wypowiedzi autobiograficznych brana była za dobrą monetę. Wizerunek Newtona stał się jego ostatnim dziełem wpływającym na potomnych może bardziej powierzchownie, lecz na pewno nie mniej szeroko niż jego książki.
W sporze, toczącym się aż do śmierci Leibniza, obie strony nie powiedziały nic nowego. Newton na podstawie subtelnej analizy tekstów starał się wykazać nieuczciwość Leibniza, Leibniz zaś unikał dyskusji na płaszczyźnie czysto historycznej i starał się wykazać swoje zasługi w upowszechnieniu rachunku tak, żeby kwestia priorytetu zepchnięta została na plan dalszy. Oba stanowiska miały zresztą swoje podstawy. Newton był istotnie pierwszy, choć zadziwiająco mało wynikło z tego dla matematyki. Newtonowi nie zależało zresztą na powszechnej dostępności swojej metody. Leibniz, niedoceniany przez Newtona, wychodził z całkiem innych założeń filozoficznych. Stąd na przykład nacisk na sformułowanie algorytmu rachunkowego, na dobrą symbolikę, dzięki której rachunek stał się narzędziem pracy ogółu matematyków.
Obie strony konfliktu nalegały na uznanie metody fluksji i rachunku różniczkowego za to samo. Chodziło przy tym o wykazanie, że druga strona właściwie nic nie odkryła. Tymczasem oba sformułowania, choć prowadziły często do jednakowych wyników nie były tożsame. Różnice sformułowań były tym ważniejsze, że rachunek ówczesny miał mocno wątpliwe podstawy logiczne. Nie było jasne, co znaczą „nieskończenie małe” wielkości ani czym jest „ostatni stosunek” znikających zmiennych. Nie interesowano się kwestiami zbieżności szeregów i dziś niektóre rozważania wczesnej analizy wydają się kuriozalne. Były to wszystko realne problemy nowej dziedziny wiedzy i praca nad uściśleniem rachunku różniczkowego trwać miała aż po wiek XIX.
Bezpośrednim skutkiem wojny filozofów było nadmierne przywiązanie brytyjskich uczonych do metod i zapisu Newtona. Przyszłość należała jednak do symboliki Leibniza i nawet newtonowska mechanika miała zostać sformułowana w języku różniczek i całek. Uczeni brytyjscy nie wnieśli istotnego wkładu do rozwoju osiągnięć Newtona przez cały wiek XVIII, między innymi z powodu źle pojętej wierności swemu mistrzowi.
Polemika dwóch najwybitniejszych „filozofów” przełomu wieków nie kończyła się na szczęście na kwestii własności intelektualnej. Spór o priorytet kompromituje obu jako ludzi; jednocześnie prowadzony spór filozoficzny jest jednak znacznie dla nas obecnie ciekawszy niż moralne upadki dawno nieżyjących adwersarzy. W tym ostatnim sporze obaj mogli okazać swój prawdziwy format.